Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Arch Virol ; 165(4): 799-807, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100137

RESUMO

We previously found that infection with human parainfluenza virus type 2 (hPIV-2), a member of the genus Orthorubulavirus, family Paramyxoviridae, causes filamentous actin (F-actin) formation to promote viral growth. In the present study, we investigated whether similar regulation of F-actin formation is observed in infections with other rubulaviruses, such as parainfluenza virus type 5 (PIV-5) and simian virus 41 (SV41). Infection with these viruses caused F-actin formation and RhoA activation, which promoted viral growth. These results indicate that RhoA-induced F-actin formation is important for efficient growth of these rubulaviruses. Only SV41 and hPIV-2 V and P proteins bound to Graf1, while the V and P proteins of PIV-5, mumps virus, and hPIV-4 did not bind to Graf1. In contrast, the V proteins of these rubulaviruses bound to both inactive RhoA and profilin 2. These results suggest that there are common and unique mechanisms involved in regulation of F-actin formation by members of the genus Orthorubulavirus.


Assuntos
Actinas/metabolismo , Vírus da Parainfluenza 2 Humana/metabolismo , Vírus da Parainfluenza 5/metabolismo , Infecções por Rubulavirus/metabolismo , Rubulavirus/metabolismo , Actinas/química , Actinas/genética , Animais , Linhagem Celular , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Parainfluenza 2 Humana/genética , Vírus da Parainfluenza 2 Humana/crescimento & desenvolvimento , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/crescimento & desenvolvimento , Ligação Proteica , Rubulavirus/genética , Rubulavirus/crescimento & desenvolvimento , Infecções por Rubulavirus/genética , Infecções por Rubulavirus/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Arch Virol ; 163(11): 3141-3148, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30097744

RESUMO

Although human rubulavirus 2 (HPIV2) is an important respiratory pathogen, little is known about its molecular epidemiology. We performed a comparative analysis of the full-length genomes of fourteen HPIV2 isolates belonging to different genotypes. Additionally, evolutionary analyses (phylogenetic reconstruction, sequence identity, detection of recombination and adaptive evolution) were conducted. Our study presents a systematic comparative genetic analysis that complements prior analyses and utilizes full-length HPIV2 genomes to provide a basis for future work on the clinical significance, molecular variation and conservation, and evolution of HPIV2.


Assuntos
Infecções por Rubulavirus/virologia , Rubulavirus/genética , Evolução Molecular , Genoma Viral , Genômica , Genótipo , Humanos , Filogenia , Rubulavirus/classificação , Rubulavirus/isolamento & purificação
3.
Influenza Other Respir Viruses ; 12(6): 706-716, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30051619

RESUMO

BACKGROUND: Widespread availability of rapid diagnostic testing for respiratory viruses allows more in-depth studies of human parainfluenza viruses (HPIV). OBJECTIVES: This study aimed to assess seasonality of HPIV types 1-4, clinical outcomes by HPIV type, and risk factors for illness severity. PATIENTS/METHODS: This retrospective study was performed from January 2013 to December 2015 in children and adults with HPIV, detected by multiplex reverse transcription polymerase chain reaction, participating in a community surveillance study of acute respiratory infections (ARIs) in New York City and patients admitted to a tertiary care center in the same neighborhood. Seasonality trends by HPIV type were compared between the community and hospital groups. The associations between HPIV type, demographics, clinical characteristics, and illness severity were assessed. RESULTS: HPIV was detected in 69 (4%) of 1753 community surveillance participants (median age 9.2 years) and 680 hospitalized patients (median age 6.8 years). Seasonality for HPIV types 1-3 agreed with previously described patterns; HPIV-4 occurred annually in late summer and fall. In the community cohort, 22 (32%) participants sought medical care, 9 (13%) reported antibiotic use, and 20 (29%) reported ≥1 day of missed work or school. Among hospitalized patients, 24% had ≥4 chronic conditions. Multivariable ordinal logistic regression demonstrated that increased severity of illness was significantly associated with HPIV-4 and chronic cardiovascular and respiratory conditions in children and with age ≥65 years and chronic respiratory conditions in adults. CONCLUSIONS: HPIV-4 presented late summer and early fall annually and was associated with increased severity of illness in hospitalized children.


Assuntos
Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/patologia , Respirovirus/classificação , Respirovirus/isolamento & purificação , Rubulavirus/classificação , Rubulavirus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Cidade de Nova Iorque/epidemiologia , Respirovirus/genética , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Rubulavirus/genética , Estações do Ano , Centros de Atenção Terciária , Adulto Jovem
4.
Med Microbiol Immunol ; 206(6): 441-446, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884293

RESUMO

Leader sequence, located at the 3' terminus of paramyxovirus genomes, determines the degree of viral transcription and replication. The essential nucleotides in the leader sequence that influence viral propagation, however, have not been investigated in detail. In the present study, we show that polymerase complex of human parainfluenza virus type 2 (hPIV2) uses a luciferase-encoding hPIV2 mini-genome possessing the leader sequence from other closely related viruses as a template. Furthermore, we demonstrate that although hPIV2 polymerase complex can recognize the leader sequence of hPIV4B, mumps virus (MuV) and PIV5 as well as Newcastle disease virus (NDV), it cannot recognize measles virus, hPIV1, Sendai virus (SeV) or hPIV3. We could obtain the chimeric hPIV2 possessing the leader sequence from hPIV4B, MuV and PIV5, but not from other species, including NDV and SeV. These results reveal that although hPIV2 polymerase complex can recognize the leader sequence from rubulaviruses to achieve efficient viral infection, this does not apply to viruses belonging to other genus. A comparison of leader sequence nucleotides among paramyxoviruses highlights the importance of the conservation in the first 13 nucleotides for infectious hPIV2 growth.


Assuntos
Regiões 3' não Traduzidas , Vírus da Parainfluenza 2 Humana/enzimologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Rubulavirus/genética , Animais , Linhagem Celular , Humanos , Ligação Proteica , Rubulavirus/fisiologia , Transcrição Gênica , Replicação Viral
5.
Arch Virol ; 162(6): 1765-1768, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28185101

RESUMO

We report the complete genome sequences of four neurovirulent isolates of porcine rubulavirus (PorPV) from 2015 and one historical PorPV isolate from 1984 obtained by next-generation sequencing. A phylogenetic tree constructed using the individual sequences of the complete HN genes of the 2015 isolates and other historical sequences deposited in the GenBank database revealed that several recent neurovirulent isolates of PorPV (2008-2015) cluster together in a separate clade. Phylogenetic analysis of the complete genome sequences revealed that the neurovirulent strains of PorPV that circulated in Mexico during 2015 are genetically different from the PorPV strains that circulated during the 1980s.


Assuntos
Genoma Viral , Filogenia , Infecções por Rubulavirus/veterinária , Rubulavirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Sequência de Bases , México , Dados de Sequência Molecular , RNA Viral/genética , Rubulavirus/classificação , Rubulavirus/genética , Infecções por Rubulavirus/virologia , Suínos
6.
Virus Res ; 230: 50-58, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28104449

RESUMO

The objective of this study was to evaluate the clinical disease, humoral response and viral distribution of recent Porcine rubulavirus (PorPV) isolates in experimentally infected pigs. Four, 6-piglet (5-days old) groups were employed (G1-84, G2-93, G3-147, and G4-T). Three viral strains were used for the experimental infection: the reference strain LPMV-1984 (Michoacán 1984) and two other strains isolated in 2013, one in Queretaro (Qro/93/2013) and the other in Michoacán (Mich/147/2013). Each strain was genetically characterized by amplification and sequencing of the gene encoding hemagglutinin-neuroamidase (HN). The inoculation was performed through the oronasal and ocular routes, at a dose of 1×106TCID50/ml. Subsequently, the signs were evaluated daily and necropsies were performed on 3 different days post infection (dpi). We recorded all micro- and macroscopic lesions. Organs from the nervous, lymphatic, and respiratory system were analyzed by quantifying the viral RNA load and the presence of the infectious virus. The presence of the viral antigen in organs was evidenced through immunohistochemistry. Seroconversion was evaluated through the use of a hemagglutination inhibition test. In the characterization of gene HN, only three substitutions were identified in strain Mich/147/2013, two in strain LPMV/1984 (fourth passage) and one in strain Qro/93/2013, with respect to reference strain LPMV-84, these changes had not been identified as virulence factors in previously reported strains. Neurological alterations associated with the infection were found in all three experimental groups starting from 3dpi. Groups G1-84 and G3-147 presented the most exacerbated nervous signs. Group G2-93 only presented milder signs including slight motor incoordination, and an increased rectal temperature starting from day 5 post infection (PI). The main histopathological findings were the presence of a mononuclear inflammatory infiltrate (lymphocytic/monocytic) surrounding the ventricles in the brain and focal interstitial pneumonitis with distention of the alveolar sacs in the lungs. PorPV and RNA distribution were identified in the organs of the nervous, lymphatic, and respiratory systems of the piglets analyzed at different times (days 5, 10, and 15 PI). The viral antigen was detected in the brain and lungs in most of the assessed groups. Seroconversion was evident in groups G1-84 and G2-93. Groups G1-84 and G3-147 were the most clinically affected by the experimental infection. Both strains were isolated in the state of Michoacán. The virulence of the new isolates maintains similar characteristics to those reported more than 30 years ago.


Assuntos
Proteína HN/genética , Sistema Nervoso/virologia , RNA Viral/genética , Infecções por Rubulavirus/veterinária , Rubulavirus/genética , Doenças dos Suínos/virologia , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Expressão Gênica , Genótipo , Sistema Linfático/patologia , Sistema Linfático/virologia , Mutação , Sistema Nervoso/patologia , Filogenia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Rubulavirus/classificação , Rubulavirus/patogenicidade , Infecções por Rubulavirus/patologia , Infecções por Rubulavirus/virologia , Suínos , Doenças dos Suínos/patologia , Carga Viral , Virulência
7.
Infect Genet Evol ; 45: 224-229, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27619056

RESUMO

Bat-borne viral diseases are a major public health concern among newly emerging infectious diseases which includes severe acute respiratory syndrome, Nipah, Marburg and Ebola virus disease. During the survey for Nipah virus among bats at North-East region of India; Tioman virus (TioV), a new member of the Paramyxoviridae family was isolated from tissues of Pteropus giganteus bats for the first time in India. This isolate was identified and confirmed by RT-PCR, sequence analysis and electron microscopy. A range of vertebrate cell lines were shown to be susceptible to Tioman virus. Negative electron microscopy study revealed the "herringbone" morphology of the nucleocapsid filaments and enveloped particles with distinct envelope projections a characteristic of the Paramyxoviridae family. Sequence analysis of Nucleocapsid gene of TioV demonstrated sequence identity of 99.87% and 99.99% nucleotide and amino acid respectively with of TioV strain isolated in Malaysia, 2001. This report demonstrates the first isolation of Tioman virus from a region where Nipah virus activity has been noticed in the past and recent years. Bat-borne viruses have become serious concern world-wide. A Survey of bats for novel viruses in this region would help in recognizing emerging viruses and combating diseases caused by them.


Assuntos
Quirópteros/virologia , Infecções por Rubulavirus , Rubulavirus , Animais , Linhagem Celular , Embrião de Galinha , Índia , Rubulavirus/classificação , Rubulavirus/genética , Rubulavirus/isolamento & purificação , Infecções por Rubulavirus/veterinária , Infecções por Rubulavirus/virologia
8.
J Virol ; 90(20): 9446-56, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512068

RESUMO

UNLABELLED: We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. The IFIT1 sensitivity of PIV5 was not rescued by coinfection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. While the translations of PIV2, PIV5, and MuV mRNAs were directly inhibited by IFIT1, the translations of PIV3, SeV, and CDV mRNAs were not. Using purified human mRNA-capping enzymes, we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5' guanosine nucleoside cap (which need not be N7 methylated) and that this sensitivity is partly abrogated by 2'O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2'O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2'-O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed. IMPORTANCE: Paramyxoviruses cause a wide variety of diseases, and yet most of their genes encode structural proteins and proteins involved in their replication cycle. Thus, the amount of genetic information that determines the type of disease that paramyxoviruses cause is relatively small. One factor that will influence disease outcomes is how they interact with innate host cell defenses, including the interferon (IFN) system. Here we show that different paramyxoviruses interact in distinct ways with cells in a preexisting IFN-induced antiviral state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of ISG56/IFIT1, while all the other paramyxoviruses tested were resistant. We developed novel in vitro biochemical assays to investigate the mechanism of action of IFIT1, demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that this is at least partially because their mRNAs are not correctly methylated.


Assuntos
Proteínas de Transporte/farmacologia , Paramyxoviridae/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Rubulavirus/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Humanos , Interferon-alfa/metabolismo , Metilação , Vírus da Caxumba/genética , Vírus da Parainfluenza 5/genética , Capuzes de RNA/genética , RNA Viral/genética , Proteínas de Ligação a RNA , Vírus Sendai/genética , Replicação Viral/genética
9.
J Biotechnol ; 223: 52-61, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26940828

RESUMO

Blue-eye disease (BED) of swine is a viral disease endemic in Mexico. The etiological agent is a paramyxovirus classified as Porcine rubulavirus (PoRV-LPMV), which exhibits in its envelope the hemagglutinin-neuraminidase (HN) glycoprotein, the most immunogenic and a major target for vaccine development. We report in this study the obtaining of ectodomain of PoRV HN (eHN) through the Pichia pastoris expression system. The expression vector (pPICZαB-HN) was integrated by displacement into the yeast chromosome and resulted in a Mut(+) phenotype. Expressed eHN in the P. pastoris X33 strain was recovered from cell-free medium, featuring up to 67 nmol/min/mg after 6 days of expression. eHN was recognized by the serum of infected pigs with strains currently circulating in the Mexican Bajio region. eHN induces antibodies in mice after 28 days of immunization with specific recognition in ELISA test. These antibodies were able to inhibit >80% replication by viral neutralization assays in cell culture. These studies show the obtaining of a protein with similar characteristics to the native HN and which may be a candidate to propose a vaccine or to use the antigen in a serologic diagnostic test.


Assuntos
Proteína HN/química , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes/metabolismo , Rubulavirus/metabolismo , Animais , Anticorpos Antivirais/metabolismo , Sistema Livre de Células , Proteína HN/genética , Proteína HN/imunologia , Proteína HN/metabolismo , Imunização , Camundongos , Pichia/genética , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Rubulavirus/genética , Suínos
10.
Virus Genes ; 52(1): 81-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26728078

RESUMO

Since the report of the initial outbreak of Porcine rubulavirus (PorPV) infection in pigs, only one full-length genome from 1984 (PorPV-LPMV/1984) has been characterised. To investigate the overall genetic variation, full-length gene nucleotide sequences of current PorPV isolates were obtained from different clinical cases of infected swine. Genome organisation and sequence analysis of the encoded proteins (NP, P, F, M, HN and L) revealed high sequence conservation of the NP protein and the expression of the P and V proteins in all PorPV isolates. The V protein of one isolate displayed a mutation that has been implicated to antagonise the antiviral immune responses of the host. The M protein indicated a variation in a short region that could affect the electrostatic charge and the interaction with the membrane. One PorPV isolate recovered from the lungs showed a mutation at the cleavage site (HRKKR) of the F protein that could represent an important factor to determine the tissue tropism and pathogenicity of this virus. The HN protein showed high sequence identity through the years (up to 2013). Additionally, a number of sequence motifs of very high amino acid conservation among the PorPV isolates important for polymerase activity of the L protein have been identified. In summary, genetic comparisons and phylogenetic analyses indicated that three different genetic variants of PorPV are currently spreading within the swine population, and a new generation of circulating virus with different characteristics has begun to emerge.


Assuntos
Infecções por Rubulavirus/veterinária , Rubulavirus/genética , Doenças dos Suínos/virologia , Animais , DNA Complementar , Surtos de Doenças/veterinária , Genes Virais , Variação Genética , México/epidemiologia , Filogenia , RNA Viral , Rubulavirus/classificação , Infecções por Rubulavirus/epidemiologia , Infecções por Rubulavirus/virologia , Análise de Sequência de RNA , Suínos , Doenças dos Suínos/epidemiologia , Proteínas Virais/genética
11.
J Med Virol ; 86(6): 1041-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24464425

RESUMO

Human parainfluenza viruses (HPIV) are important causes of respiratory tract infections in young children. To characterize the molecular epidemiology of an HPIV outbreak occurring in Korea during 2006, genetic analysis of 269 cell culture isolates from HPIV-infected children, was conducted using nested reverse transcription-PCR (RT-PCR). HPIV-1 was detected in 70.3% of tested samples (189/269). The detection rate of HPIV-2 and HPIV-3 was 1.5% (4/269) and 9.3% (25/269), respectively. Mixed HPIV-1, -2 and -3 infections were detected in 19.0% (51/269): HPIV-1 and HPIV-2 in 15, HPIV-1 and HPIV-3 in 26, HPIV-2 and HPIV-3 in 6, and HPIV-1, -2 and -3 in 4. Of these positive samples for three different types HIPV-1, -2, and -3, two each representative strains were selected, the full length of hemagglutinin-neuraminidase (HN) gene for HPIV was amplified by RT-PCR, and sequenced. Multiple alignment analysis, based on reference sequence of HPIV-1, -2, and -3 strains available in GenBank, showed that the identity of nucleotide and deduced amino acid sequences was 92.4-97.6% and 92.7-97.9%, respectively, for HPIV-1, 88.5-99.8% and 88.6-100% for HPIV-2, and 96.3-99.5% and 95.0-99.3% for HPIV-3, respectively. Phylogenetic analysis showed that HPIV-1, -2, and -3 strains identified in this study were closely related among the strains in the same type with no significant genetic variability. These results show that HPIV of multiple imported sources was circulating in Korea.


Assuntos
Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Respirovirus/classificação , Respirovirus/genética , Rubulavirus/classificação , Rubulavirus/genética , Criança , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/virologia , Variação Genética , Proteína HN/genética , Humanos , Lactente , Epidemiologia Molecular , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Prevalência , República da Coreia/epidemiologia , Respirovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubulavirus/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
12.
Zoonoses Public Health ; 61(2): 131-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23734711

RESUMO

We conducted an immunological assay of blood samples taken from 85 swine-specialist veterinarians attending the Congress of the Mexican Association of Swine Specialist Veterinarians in Mexico in 2011. Serum samples were assayed for Porcine rubulavirus (PorPV), Encephalomyocarditis virus (EMCV) and Leptospira spp. antibodies. Using a hemagglutination inhibition test, we registered 2.3% and 27% seropositivity for PorPV and EMCV, respectively. Using viral neutralization tests, we registered 5.8% and 47% seropositivity for PorPV and EMCV, respectively. For Leptospira spp., we registered a seropositivity of 38.8%. The variables (sex, age, years of exposure, number of visited farms, biosecurity level and region) showed no significant effect (P > 0.05) on the seropositivity for EMCV, PorPV and Leptospira spp. except for number of visited farms on HI seropositivity for EMCV (P < 0.05; odds ratio: 1.38). The data obtained provide information on the epidemiology of emerging diseases with zoonotic potential in occupational risk groups.


Assuntos
Infecções por Cardiovirus/epidemiologia , Leptospirose/epidemiologia , Exposição Ocupacional , Infecções por Rubulavirus/epidemiologia , Doenças dos Suínos/epidemiologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Infecções por Cardiovirus/microbiologia , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/imunologia , Vírus da Encefalomiocardite/isolamento & purificação , Feminino , Humanos , Leptospira/genética , Leptospira/imunologia , Leptospira/isolamento & purificação , Leptospirose/microbiologia , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Rubulavirus/genética , Rubulavirus/imunologia , Rubulavirus/isolamento & purificação , Infecções por Rubulavirus/microbiologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/microbiologia , Médicos Veterinários , Adulto Jovem , Zoonoses
13.
J Virol ; 87(17): 9604-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804633

RESUMO

Parainfluenza virus 5 (PIV5) is a promising viral vector for vaccine development. PIV5 is safe, stable, efficacious, cost-effective to produce and, most interestingly, it overcomes preexisting antivector immunity. We have recently reported that PIV5 expressing the hemagglutinin (HA) from highly pathogenic avian influenza (HPAI) virus H5N1 (PIV5-H5) provides sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. It is thought that induction of apoptosis can lead to enhanced antigen presentation. Previously, we have shown that deleting the SH gene and the conserved C terminus of the V gene in PIV5 results in mutant viruses (PIV5ΔSH and PIV5VΔC) that enhance induction of apoptosis. In this study, we inserted the HA gene of H5N1 into PIV5ΔSH (PIV5ΔSH-H5) or PIV5VΔC (PIV5VΔC-H5) and compared their efficacies as vaccine candidates to PIV5-H5. We have found that PIV5ΔSH-H5 induced the highest levels of anti-HA antibodies, the strongest T cell responses, and the best protection against an H5N1 lethal challenge in mice. These results suggest that PIV5ΔSH is a better vaccine vector than wild-type PIV5.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Parainfluenza 5/genética , Rubulavirus/genética , Animais , Anticorpos Antivirais/biossíntese , Apresentação de Antígeno , Apoptose , Chlorocebus aethiops , Feminino , Genes Virais , Vetores Genéticos/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Parainfluenza 5/imunologia , Rubulavirus/imunologia , Linfócitos T/imunologia , Células Vero
14.
Arch Virol ; 158(8): 1765-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23807746

RESUMO

A novel cytopathogenic paramyxovirus was isolated from a lung sample from a piglet, using continuous porcine alveolar macrophage cells. Morphologic and genetic studies indicated that this porcine virus (pPIV5) belongs to the species Parainfluenza 5 in the family Paramyxoviridae. We attempted to determine the complete nucleotide sequence of the first Korean pPIV5 isolate, designated KNU-11. The full-length genome of KNU-11 was found to be 15,246 nucleotides in length and consist of seven nonoverlapping genes (3'-N-V/P-M-F-SH-HN-L-5') predicted to encode eight proteins. The overall degree of nucleotide sequence identity was 98.7 % between KNU-11 and PIV5 (formerly simian virus 5, SV5), a prototype paramyxovirus, and the putative proteins had 74.4 to 99.2 % amino acid identity to those of PIV5. Phylogenetic analysis further demonstrated that the novel pPIV5 isolate is a member of the genus Rubulavirus of the subfamily Paramyxovirinae. The present study describes the identification and genomic characterization of a pPIV5 isolate in South Korea.


Assuntos
Genoma Viral , RNA Viral/genética , Rubulavirus/genética , Análise de Sequência de DNA , Animais , Análise por Conglomerados , Pulmão/virologia , Dados de Sequência Molecular , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Filogenia , República da Coreia , Rubulavirus/isolamento & purificação , Homologia de Sequência , Suínos , Doenças dos Suínos/virologia
15.
J Virol ; 87(15): 8342-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23698295

RESUMO

For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity.


Assuntos
Proteína HN/metabolismo , Rubulavirus/fisiologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Animais , Fusão Celular , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Proteína HN/genética , Humanos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Rubulavirus/genética , Proteínas Virais de Fusão/genética
16.
J Virol ; 87(9): 4798-807, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449801

RESUMO

Preparations of parainfluenza virus 5 (PIV5) that are potent activators of the interferon (IFN) induction cascade were generated by high-multiplicity passage in order to accumulate defective interfering virus genomes (DIs). Nucleocapsid RNA from these virus preparations was extracted and subjected to deep sequencing. Sequencing data were analyzed using methods designed to detect internal deletion and "copyback" DIs in order to identify and characterize the different DIs present and to approximately quantify the ratio of defective to nondefective genomes. Trailer copybacks dominated the DI populations in IFN-inducing preparations of both the PIV5 wild type (wt) and PIV5-VΔC (a recombinant virus that does not encode a functional V protein). Although the PIV5 V protein is an efficient inhibitor of the IFN induction cascade, we show that nondefective PIV5 wt is unable to prevent activation of the IFN response by coinfecting copyback DIs due to the interfering effects of copyback DIs on nondefective virus protein expression. As a result, copyback DIs are able to very rapidly activate the IFN induction cascade prior to the expression of detectable levels of V protein by coinfecting nondefective virus.


Assuntos
Vírus Defeituosos/genética , Genoma Viral , Infecções por Rubulavirus/imunologia , Infecções por Rubulavirus/virologia , Rubulavirus/genética , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferons/genética , Interferons/imunologia , Infecções por Rubulavirus/genética , Proteínas Virais/genética
17.
Arch Virol ; 158(9): 1849-56, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23525730

RESUMO

Blue-eye disease is an emergent viral swine infection caused by porcine rubulavirus (PoRV). We have developed a qRT-PCR method to detect and quantify expression of the nucleoprotein gene for different PoRV strains. The limit of detection for this assay was 10(2) copies of synthetic RNA. Viral RNA from PoRV was detectable at a TCID50 of 0.01. Significant differences were observed between viral RNA quantification and virus titration results for nine PoRV strains. For nasal and oral swab samples that were collected from experimentally infected pigs, the qRT-PCR assay was more sensitive (87.1-83.9 %) for the detection of positive samples than methods involving isolation of virus. The implementation of highly sensitive assays that yield results quickly will be of great assistance in the eradication of PoRV from Mexico. We also believe that the newly developed qRT-PCR assay will help reduce the spread of this viral infection to other countries.


Assuntos
Nucleoproteínas/genética , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Rubulavirus/veterinária , Rubulavirus/classificação , Rubulavirus/genética , Doenças dos Suínos/virologia , Proteínas Virais/genética , Animais , Genótipo , México , Nucleoproteínas/metabolismo , RNA Viral/genética , Reprodutibilidade dos Testes , Rubulavirus/isolamento & purificação , Infecções por Rubulavirus/virologia , Sensibilidade e Especificidade , Suínos , Proteínas Virais/metabolismo
18.
J Virol Methods ; 189(1): 1-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23305816

RESUMO

In order to provide a rapid and sensitive method for detection of the Porcine rubulavirus La Piedad-Michoacan-Mexico Virus (PoRV-LPMV), we have developed a specific real-time reverse transcriptase polymerase chain reaction assay. The detection of PoRV-LPMV, represents a diagnostic challenge due to the viral RNA being present in very small amounts in tissue samples. In this study, a TaqMan(®) real-time PCR assay was designed based on the phosphoprotein gene of PoRV-LPMV, to allow specific amplification and detection of viral RNA in clinical samples. Assay conditions for the primers and probe were optimized using infected PK15 cells and ten-fold serial dilutions of a plasmid containing the whole P-gene. The sensitivity of the developed TaqMan(®) assay was approximately 10 plasmid copies per reaction, and was shown to be 1000 fold better than a conventional nested RT-PCR. The performance of this real-time RT-PCR method enables studies of various aspects of PoRV-LPMV infection. Finally, the assay detects all current known variants of the virus.


Assuntos
Fosfoproteínas/análise , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Infecções por Rubulavirus/veterinária , Rubulavirus/isolamento & purificação , Doenças dos Suínos/diagnóstico , Proteínas Virais/análise , Animais , Linhagem Celular , Ciclofilinas/análise , Ciclofilinas/genética , Genoma Viral , Fosfoproteínas/genética , Plasmídeos , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rubulavirus/genética , Infecções por Rubulavirus/diagnóstico , Infecções por Rubulavirus/virologia , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética
19.
Vet Microbiol ; 162(2-4): 491-498, 2013 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-23201243

RESUMO

Porcine rubulavirus is the etiological agent of blue eye disease in pigs. In boars, this virus causes orchitis and epididymitis and reduces seminal quality. The objective of this study was to determine the persistence of porcine rubulavirus in experimentally infected boars. Nine 12-month-old boars were infected with 5 ml of the PAC-3 strain of porcine rubulavirus at 1 × 10(5) TCID(50)/ml and held for 142 days post infection (DPI) to evaluate humoral immune response. The virus was isolated in cell cultures and detected by RT-PCR. Infection with porcine rubulavirus produced clinical signs beginning at 5 DPI. Necropsy results showed that 3 boars had lesions in the testicles and epididymes. Histological analysis showed the characteristic lesions in all infected boars. Porcine rubulavirus antibodies were detected in the second week post infection and increased significantly (P<0.05) over time. Isolation of the virus from semen was achieved between 5 DPI and 48 DPI and from the testicles and epididymes between 64 DPI and 142 DPI. Viral RNA was detected in the serum between 2 DPI and 64 DPI and in the semen until 142 DPI. These results confirm that the RNA of the porcine rubulavirus persists in the semen and that this virus remains in the reproductive tract for prolonged periods of infection. Semen of persistently infected boars, therefore, represents an important source of the virus and a risk factor for the spread of blue eye disease in swine populations.


Assuntos
Infecções por Rubulavirus/veterinária , Rubulavirus/fisiologia , Doenças dos Suínos/virologia , Animais , Linhagem Celular , Cricetinae , Masculino , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubulavirus/genética , Rubulavirus/isolamento & purificação , Infecções por Rubulavirus/patologia , Infecções por Rubulavirus/virologia , Sêmen/virologia , Sus scrofa , Suínos , Doenças dos Suínos/patologia , Testículo/virologia
20.
J Virol ; 87(3): 1348-58, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23152534

RESUMO

Bats carry a variety of paramyxoviruses that impact human and domestic animal health when spillover occurs. Recent studies have shown a great diversity of paramyxoviruses in an urban-roosting population of straw-colored fruit bats in Ghana. Here, we investigate this further through virus isolation and describe two novel rubulaviruses: Achimota virus 1 (AchPV1) and Achimota virus 2 (AchPV2). The viruses form a phylogenetic cluster with each other and other bat-derived rubulaviruses, such as Tuhoko viruses, Menangle virus, and Tioman virus. We developed AchPV1- and AchPV2-specific serological assays and found evidence of infection with both viruses in Eidolon helvum across sub-Saharan Africa and on islands in the Gulf of Guinea. Longitudinal sampling of E. helvum indicates virus persistence within fruit bat populations and suggests spread of AchPVs via horizontal transmission. We also detected possible serological evidence of human infection with AchPV2 in Ghana and Tanzania. It is likely that clinically significant zoonotic spillover of chiropteran paramyxoviruses could be missed throughout much of Africa where health surveillance and diagnostics are poor and comorbidities, such as infection with HIV or Plasmodium sp., are common.


Assuntos
Quirópteros/virologia , Infecções por Rubulavirus/veterinária , Infecções por Rubulavirus/virologia , Rubulavirus/classificação , Rubulavirus/isolamento & purificação , Zoonoses/epidemiologia , Adolescente , Adulto , África/epidemiologia , Animais , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Rubulavirus/genética , Rubulavirus/patogenicidade , Infecções por Rubulavirus/epidemiologia , Análise de Sequência de DNA , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...